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This paper is intended to evaluate the wall effects in the pure-drag case of plane 
cavity flow past an arbitrary body held in a closed tunnel, and to establish an 
accurate correction rule. The three theoretical models in common use, namely, 
the open-wake, Riabouchinsky and re-entrant-jet models, are employed to 
provide solutions in the form of some functional equations. From these theoretical 
solutions several different rules for the correction of wall effects are derived for 
symmetric wedges. These simple correction rules are found to be accurate, as 
compared with their corresponding exact numerical solutions, for all wedge 
angles and for small to moderate ‘tunnel-spaoing ratio’ (the ratio of body frontal 
width to tunnel spacing). According to these correction rules, conversion of a 
drag coefficient, measured experimentally in a closed tunnel, to the corresponding 
unbounded flow case requires only the data of the conventional cavitation 
number and the tunnel-spacing ratio if based on the open-wake model, though 
using the Riabouchinsky model it requires an additional measurement of the 
minimum pressure along the tunnel wall. 

The numerical results for symmetric wedges show that the wall effects in- 
variably result in a lower drag coefficient than in an unbounded flow at the same 
cavitation number, and that this percentage drag reduction increases with 
decreasing wedge angle and/or with decreasing tunnel spacing relative to the 
body frontal width. This indicates that the wall effects axe generally more 
signscant for thinner bodies in cavity flows, and they become exceedingly small 
for sufficiently blunt bodies. Physical explanations for these remarkable features 
of cavity-flow wall effects are sought; they are supported by the present experi- 
mental investigation of the pressure distribution on the wetted body surface 
as the flow parameters are varied. It is also found that the theoretical drag 
coefficient based on the Riabouchinsky model is smaller than that predicted by 
the open-wake model, all the flow parameters being equal, except when the flow 
approaches the choked state (with the cavity becoming infinitely long in a 
closed tunnel), which is the limiting case common to all theoretical models. This 
difference between the two flow models becomes especially pronounced for smaller 
wedge angles, shorter cavities, and with tunnel walls farther apart. 

In  order to gauge the degree of accuracy of these theoretical models in approxi- 
mating the real flows, and t o  ascertain the validity of the correction rules, a 
series of dehitive experiments was carefully designed to complement the theory, 
and then carried out in a high-speed water tunnel. The measurements on a series 
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of fully cavitating wedges at  zero incidence suggest that, of the theoretical 
models, that due to Riabouchinsky is superior throughout the range tested. The 
accuracy of the correctionrule based on that model has a,lso been firmly established. 
Although the experimental investigation has been limited to symmetric wedges 
only, this correction rule (equations (85), (86) of the text) is expected to possess 
a general validity, at least for symmetric bodies without too large curvatures, 
since the geometry of the body profile is only implicitly involved in the correction 
formula. This experimental study is perhaps one of a very few with the particular 
objective of scrutinizing various theoretical cavity-flow models. 

I. Introduction 
The wall effects in cavity flows occurring in water tunnels have been recog- 

nized to be considerably more appreciable and more difficult to determine than 
those in the wind tunnel (or water tunnel) tests of non-separated (or non- 
cavitating) flows past an obstacle. The main difficulty may be attributed 
primarily to the presence of a cavity boundary which renders this free-surface 
flow problem intrinsically non-linear in the sense that the configuration of the 
body-cavity system will change as the wall-spacing or the cavitation number 
varies, whereas in non-separated or non-cavitating flows the body shape always 
remains the same. Another complication arises from the fact that in experiments 
the cavitation number cannot be predicted in terms of known free-stream con- 
ditions, but still must be measured, since the cavity pressure is a manifestation of 
the entire flow, and this flow parameter may change as the body scale and/or 
the wall spacing is varied. Partly for these reasons, the state of knowledge about 
the wall effects in cavity flows has not been as well developed as its counterpart 
in wind tunnel experimental techniques. (For a general review of the latter see 
Pope (1958) and the cited references.) In  fact, there does not seem to exist an 
accurate formula or rule for the tunnel-wall correction of cavity flows in general. 
The principal object of this study is to investigate the effects of relevant flow 
parameters, and to establish a simple wall-correction rule for cavity flows. 

The physical flow boundaries in the test section of water tunnels may be 
classified in three different types: (a) rigid walls of closed tunnels, ( b )  a free 
surface of constant pressure if the tunnel uses a free jet, and (c) a combination 
of free and solid surfaces, such as in a partly bounded jet tunnel, or in a horizontal 
free-surface channel with rigid bottom and sides. The presence of these flow 
boundaries will introduce several significant effects: (i) In  dealing with the 
potential portion of the flow, these flow boundaries will impose a condition either 
on the flow direction at rigid walls or on the pressure at a free surface. In  most 
cases, they will produce extraneous forces and modifications of cavity shape that 
should be corrected if the experimental results are to represent the corresponding 
unbounded flows. (ii) In  closed tunnels, the boundary layer built up at the solid 
tunnel walls in a long straight test section may effectively reduce the tunnel 
area, and generate a longitudinal pressure gradient in the working section, giving 
rise to an additional drag force known as the ‘horizontal buoyancy’. It is usually 
small in closed test sections, and can be compensated for by having slightly 
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diverging walls, or adjustable walls. This viscous effect may also produce, near 
the intersection of a two-dimensional model and the tunnel walls, a secondary 
flow, which will further change the primary flow field. (iii) The lateral constraint 
in closed test-sections will result in a higher velocity outside the boundary 
layer, and hence a greater skin friction a t  the wetted body surface. However, 
when the Reynolds number R e  is large, as is generally the case in practice, the 
boundary-layer-induced pressure field is quite small (of O(Re-4) in drag, and of 
O(Re-4 log R e )  in lifting flows). (iv)The lateral constraint also affects the spreading 
of the viscous wake behind the cavity, an effect known as the ‘wake blocking’. 
This effect increases the drag of a model in a closed wind tunnel (see Pope 1958; 
Allen & Vincenti 1944), and is usually negligible in open jets. For cavity flows 
inside a closed water-tunnel, however, this ‘ wake-blocking ’ effect is usually 
less significant than the effect on the change in cavity shape and in cavitation 
number (both of the latter being already included in (i) above). (v) In  the case 
where cavity-boundary detachment from a curved body (such as a circular 
cylinder) is smooth (characterized by the curvature of the cavity boundary being 
finite at  detachment), the point of detachment will dependon both the cavitation 
number and the wall spacing. In  such cases, correlation between the experimental 
results and the unbounded flow would be even more complicated. In  the present 
work, effect (i) will be investigated for the pure-drag flows, so that this primary 
effect can be clarified first. The same effect in the case of lifting flows will be 
discussed in a future paper. Effect (ii) can be evaluated with some modifications 
of the present formulation by incorporating the method for wind-tunnel tests 
of Allen & Vincenti (1944) or that of Glauert (1933). Effect (iii) can be estimated 
by taking the boundary layer into account, as will be done in $8, when the 
experimental data are analyzed. The secondary effect (iv) is expected to be even 
less significant than in the wind-tunnel case, since the wake would be further 
downstream, and will not be pursued here. The effect (v) is, however, beyond 
the scope of the present study. 

In  the past, a few special problems of wall effects have been discussed. The 
choked cavity flow (i.e. when the cavity is infinitely long in a closed tunnel or in 
a free jet) attracted early attention due to its relative simplicity. Birkhoff, 
Plesset & Simmons (1950) treated the non-lifting case of a wedge. Suppose a 
symmetric body of frontal area A ,  placed centrally in a tunnel, experiences a 
drag D in a choked cavity flow with upstream velocity U and pressure pa. 
Define two drag coefficients, 

where qc is the constant velocity at the cavity boundary. For a flat plate set 
broadwise to flow, Birkhoff, Plesset & Simmons (1950) showed theoretically that 
the conventional drag coefficient CD depends strongly on the spacing of the channel 
walls, whereas C& is almost insensitive to it. When the test section is a free jet, 
both CD and C& are found to be insensitive to the jet width (down to the body 
width); this may be attributed to the fact that for an infinite cavity in a free 
jet the two velocities U and qc are equal. These results were predicted earlier by 
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Valcovici (1913) using methods suggested by Prandtl. Now, by Bernoulli’s 
theorem, 

(2) 

where pc is the cavity pressure, ps  the stagnation pressure, and I )b  is the pressure 
associated with a third reference velocity V (to be used later in this study). 
Then 

p+ipq2 = pm+&pU2 = pc+&p$ = Pb+gpV2 = 218, 

CD = (qc/u)2 c& = (1 a) c&, 131 

(4) 

where CT is the conventional cavitation number, 

IJ = (p53-Pc)/wJ2 = ( P c / W 2 -  1.  

Now, since C& is nearly constant (equal to 0-88 for the flat plate set normal to 
stream), and the factor (1  +a) gives an accurate dependence of C, on a for a 
plate in an unbounded flow (for 0 < CT < 1, see e.g. Gilbarg 1960; Wu 1968), 
the above relationship (3) has led Birkhoff (1950) to  assert the stronger ‘principle 
of stability of the pressure coefficient’: that for an obstacle of given shape in a 
water tunnel (or jet) the pressure coefficient, 

rather than 

c; = ( p -  

is insensitive to the presence of walls and changes in the cavitation number u. 
This principle, elegant and useful as it may be for blunt bodies, unfortunately 
does not possess a general validity. In  fact, as the result of this work will show 
later, the wall effects in terms of either CD or C& are rather insignificant for 
blunt bodies. For symmetric wedges, the wall effect on C, increases with 
decreasing wedge angle and the effect on C& is actually more pronounced. 

In the general case of unchoked cavity flows in a bounded stream, various 
attempts have been made to apply different theoretical flow models in some simple 
cases. The Riabouchinsky model was adopted by Cisotti (1922) for cavity flow 
past a plate in a tunnel, by Simmons (1948) and by Birkhoff et al. (1952) for a 
plate either in a tunnel or in a free jet. The re-entrant jet model was used by 
Gurevich (1953) for a wedge in a tunnel. The open-wake model of Joukowsky & 
Roshko, which turns out to be the simplest in numerical detail though it has 
not, to the author’s knowledge, been employed before, is considered here along 
with the other models in formdating the general problem of an arbitrary body 
in symmetrical tunnel flow. 

The problem of wall effects on lifting cavity flows is more complicated, owing 
to the lack of a basic symmetry. The case of choked flow past an inclined flat 
plate within a straight tunnel has been investigated by Ai (1966). A linearized 
theory for choked flows past vented or cavitating hydrofoils has been developed 
by Fabula (1964). The wall effect on the force coefficients of an inclined flat plate 
with a finite cavity have been evaluated by Wu, Whitney & Lin (1969), based 
on the open-wake model. A general discussion of the lifting cavity flows will 
be presented in a future paper. 
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An entirely different approach to this problem for a thin body at small 
incidence is based on the linearized cavity-flow theory. This linearized theory has 
been developed for wall-effect problems by Cohen & Di Prima (1958), Cohen & 
Gilbert (1957), Cohen, Sutherland & Tu (1957), and by Fabula (1964). Some 
comparison between the non-linear and linear theories will be made in this 
study (see 8 8). 

Recently, Brennen (1969b) adopted the Riabouchinsky model to evaluate the 
wall effect for axisymmetric flows with a finite cavity past a disk and a sphere; 
he also obtained some new experimental results. In Brennen’s relaxation method, 
the flow is bounded laterally by a concentric cylinder of various sizes, down to the 
smallest that produces the choked flow at one cavitation number, and the un- 
bounded flow case is reached by extrapolation. The numerical results thus also 
furnish useful information about the wall effect in axisymmetric cavity flows. 
This problem has been discussed previously by Armstrong & Tadman (1953), 
and by Campbell & Thomas (1956) for the variation of the cavity dimensions. 

A clear understanding of the wall effects in wake or cavity flows is essential to 
interpret correctly the experimental results. Grove et al. (1964) investigated 
experimentally the steady separated flow past a circular cylinder (of diameter d )  
in an oil tunnel (of spacing h) with the Reynolds number going up to about 300. 
For d /h  = 0-05, the base pressure coefficient was found to reach the asymptote 
- 0.45 for Re > 25 (up to Re = 177). It was then conjectured that the pressure 
profile for d / h  = 0.05 had already reached the limiting form as d / h  -+ 0 (the 
unbounded flow case). However, this final extrapolation is misleading, since 
a simple estimate (e.g. by using (10) below) indicates that the flow state at hand 
is right in the vicinity of the choked flow limit. 

Experimental studies designed to investigate the wall effects in cavity flows 
have received increasing attention recently. A review of these activities has been 
given by Morgan (1966). Dobay (1967) investigated experimentally the blockage 
effects on axisymmetric cavity flows past circular disks, set normal to the flow, 
and showed that choking occurred even with the disk-to-tunnel diameter ratio 
reduced to 2%. Similar findings have been reported by Barr (1966). 

In another experimental endeavour, Meijer (1967) investigated the tunnel- 
wall effect on a cavitating hydrofoil with a flap. An empirical method for correct- 
ing the wall effect was chosen, which is based on a different pressure coefficient 
Ci and cavitation number d’, defined as (see (2)) 

c; = ( p  -p,)/&pV2 = 1 - ( 3 v)2, d’ = (pb-pc)/$Pv2,  C;(d’) = D/&/lv2A, (6) 

where p b  is the minimum pressure and V is the corresponding maximum velocity 
on the tunnel wall. In  light of the present theoretical result and more definitive 
experimental verifications, Meijer’s rule appears generally to over-correct the 
cavity-flow wall effects, as will be shownlater. This defect has also been discovered, 
independently, by Meijer (1969), who proposed a modified empirical method. 

Finally, it is of interest to point out the different trends between the wall 
effects in non-separated, non-cavitating flows and those in cavity flows. In 
closed wind tunnels, the lateral constraint and body thickness generally result 

15-2  
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in an increase of flow velocity and hence dynamic pressure, thus increasing lift, 
drag, and moment coefficients at  a given angle of attack (see e.g. Pope 1958). 
In contrast, the general trend of the wall effect on cavity flows in closed tunnels 
have been found to decrease the drag and lift coefficients at prescribed cavitation 
number and incidence. These opposite trends may seem a t  first glance puzzling, 
particularly to those experienced with wind-tunnel testings. Actually, the lateral 
constraint in the presence of a cavity still results in an increase of flow velocity, 
and hence a decrease of the pressure over the wetted surface of the body, con- 
sequently decreasing all the forces if referred to the same cavitation number. 
Furthermore, this increase in flow velocity at the cavity boundary will cause the 
cavity pressure to be somewhat lower, and hence the cavitation number some- 
what higher than in an unbounded flow with the same free stream condition. 
These two effects therefore reinforce each other such that the curve of C, vs. u 
lies below the corresponding curve for unbounded flow. 

2. Theoretical models for inviscid cavity flows : momentum considera- 
tions 

The theoretical models in common use for treating steady inviscid cavity flows 
have been known to predict hydrodynamic forces on blunt obstacles with dif- 
ferences so small that they are usually beyond the limit of experimental accuracy 
(see e.g. Gilbarg 1961). It is also known that these models, when applied to un- 
steady cavity-flow problems, yield appreciably different results (see Wang & 
Wu 1963). Since the real-fluid effects in the wake are approximated by different 
artifices in different models and the cavity drag is distributed, according to 
these artifices, at  different rates in different regions, it  is of interest to examine 
these models in the presence of strong wall effects. This will be done in two steps. 
First, the over-all features will be studied in the light of simple momentum 
consideration. The rest will be complemented by the detailed analysis. The final 
results for thin obstacles exhibit appreciable differences between the three 
models adopted. This theoretical result has helped plan the experimental in- 
vestigations for a crucial evaluation of the theoretical models, as will be discussed 
in $8. 

Before we deal with the inviscid cavity- or wake-flow models, let us consider 
a typical viscous, incompressible flow past a blunt body which is propelled along 
the axis of an infinitely long straight tunnel by an external force. The body 
moves at  a sufficiently high Reynolds number Re so that a recirculating near wake 
(or a finite cavity in a two-phase flow) is established. For simplicity, the addi- 
tional viscous effect due to the boundary layer built up along the tunnel walls 
will be avoided by assuming that the walls can be made to move with an appro- 
priate tangential velocity so as to eliminate the boundary layer altogether. Then, 
with respect to the body frame, the upstream velocity will be U ,  say, and the 
pressurep, (see figure 1 (a ) ) .  At large distances downstream (say for x > pU2A$/D, 
where A ,  is the cross-sectional area of the tunnel and D is the drag of the body), 
where the turbulent far wake has spread uniformly across the channel, or even 
after the turbulence has dissipated and degenerated into a laminar flow, the 
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mean velocity will again be uniform and equal to U on account of the continuity. 
But the pressure, after full recovery of the kinetic energy, will be pb say, which 
must be less than p w ,  by the simple momentum consideration, 

A being the body frontal area, and C, being defined by (1). Thus, the wall effect 
here reduces the momentum defect to zero, and gives rise to an under-pressure 
in the downstream. This under-pressure coefficient C; diminishes in proportion 
to the ratio A / A ,  as A / A ,  --f 0, since CD must remain finite. (In plane flows, A ,  
is replaced by the tunnel wall spacing h, and A by the body frontal width I ) .  

I 
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FIGURE 1, Momentum considerations for cavity and wake flows. 

We now turn to consider the cavity-flow models for an arbitrary body placed 
in a straight tunnel, with a h i t e  cavity formation. Although they have been 
applied exclusively to plane flow analysis, the following momentum theorems 
are also valid for the three-dimensional case provided the relevant lengths are 
appropriately converted to their corresponding areas. 
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2.1. Open wake model 
According to this model, which is due to Joukowsky (1890)) Roshko (1954), 
and Eppler (1954)) and was modified by Wu (1962), the dividing streamline is 
tangential to the body surface (ED and ED' in the cross-sectional view of 
figure 1 ( b ) ) ,  detaches from the body a t  D and D' to form a cavity boundary DC 
and D'C' over which the flow speed assumes a prescribed constant value qc 
(pressure pc) ,  and then proceeds downstream along CB and C'B', becoming 
asymptotically parallel to the walls so that the flow cross section approaches 
k ( = k, + k, in figure 1 ( b ) ) ,  the velocity becomes V ,  and the pressurepb. The shape 
of CB and C'B' is such that this variable pressure part of the boundary makes 
no net contribution to the force on the body. Both V and k are unknown apriori, 
b u t  must satisfy the continuity equation 

U h =  Vk. (8 )  

The momentum consideration for the longitudinal component of the flow gives 

D = ( ~ 0 0  -pC)h- ( p b - p c )  k +pU2h -pV2k, 
which becomes, upon using (2) and (8), 

where 1 denotes the frontal body width for plane flows (or the body frontal area 
in three-dimensional flows). 

It is of particular significance to consider the choked flow limit (when the 
cavity becomes infinitely long and V increases towards qc). Let the corresponding 
limit of U ,  C, and the cavitation number u, with h/Z and qc held fixed. be denoted 
by V,, C,, and CT* respectively, then 

CT* is called the choked cavitation number. From (10) it follows that 

fl* = 2(ACD,)t + (AC&) > 2(hCD,)t. (11) 
It is to be noted that (T* provides a lower limit of (r below which the flow is 
physically not feasible, and that the right-hand side of ( 1  1)  is a fairly accurate 
estimate of (T* for small A. Thus, to achieve (r = 0.1, we must have h/Z > 400 

Another point of interest is that the choked flow drag coefficient can be ex- 
pressed in terms of the geometry by using (8). Since U*h = qck, (10) and (3) 
qecome 

ifC,, 2: 1.  

In the case of bluff bodies C;. is insensitive to A. Then 

gives an estimate of k/h in terms of A. 
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When the cavity is finite in length, we must have U < V < qc. For sufficiently 
small A, V N U (see (9)) and the under-pressure coefficient at the downstream 
end becomes 

(14) 

thus C; is proportional to  A, as in the case of (7), which is based on the viscous 
flow argument. However, very close to the choked flow state, (9), 

c; = (pm-pb)/*pU2 = (V/U)Z- 1 N A(ZC,/a) (a > c*); 

ci 2: (hCD,)& (a 21 g*), (15) 

which decreases much slower with decreasing A. 

2.2. Re-entrant jet model 
A description of this model, which has been attributed independently to Kreisel, 
Gilbarg & Efros, can be found in Gilbarg (1960). As shown in figure 1 (c), let the 
downstream uniform state be characterized by velocity V and pressure Pa. The 
jet flows upstream through the cavity into a second Riemann sheet, approaching 
a uniform state of velocity qc, cross-sectional area l j  and inclination y to the 
upstream flow direction. Then the continuity condition requires 

(77- V ) h  = qclj. (16) 

In  contrast to the open-wake model, we now have V < U ,  and hence pb > p ,  
(an over-pressure at the downstream !) as the momentum defect is carried off by 
the jet. Since the longitudinal momentum flux in the jet is ( -pqccosy) (q&, we 
now have the momentum equation, 

D = (pa -pc) h - (pb -pc) + p (  u2- v') +pzjq:cosy, 

which is reduced, upon using (16) and (2), to 

The choked flow state cannot readily be derived from the above formulas 
(it can however be deduced from the analysis later). Nevertheless, the limit 
must evidently be the same as (10) and (1 1) by virtue of the momentum con- 
sideration. In  the non-choked condition, the over-pressure at the downstream 
end is 

c,. = (pb-pm)/QpU2 = 1 - ( ; ) 2 N  - (;)c,/(l+~cOsY). (18) 

2.3.  Riabouchinsky model 
The main features of this model are shown in the typical case to be discussed in 
$4 .  Since there is no more than one distinct uniform flow state, the simple 
momentum argument cannot be employed to determine the drag, despite the 
fact that the choked flow state must agree with the other models. On the other 
hand, this model has an advantage of providing a point (point B in figure 6, $4)  
at which the veIocity is maximum, and pressure minimum on the tunnel wall. 
This velocity is to be used in calculating Ci as defined in (6). 
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In  the remainder of this paper, we consider the pure-drag cavity flow past a 
symmetric body of arbitrary shape, placed symmetrically in a straight tunnel of 
width h, with a finite cavity attached to the body. The characteristic Reynolds 
number and the Froude number based on the body dimension are both assumed 
to be so large that the viscous and gravitational effects may be neglected. The 
solution will be determined by using three different flow models. 

A 

3. Open-wake model 
This semi-infinite open-wake model has already been described in Q 2. As shown 

in figure 2, the boundaries CB and C'B' of the variable pressure part of the open 
wake now become straight and parallel to the x axis by virtue of the flow sym- 
metry. The flow region in the strip 111.1 < @l = *Uh of the complex potential 

c - k 
2 B 

z plane t y  

A, 

A 

A Z  

X 

D 

Uh12 
B 

D C  
c 

E D c '  - 4  

+= -h B C '  - 1  0 1 C 

D E  D 5 

plane f = 4 + i$ (4 being the velocity potential and $ the stream function) is 
mapped into the upper half of the parametric plane 5 = t+ i q  by 

in which the coeEcient A is determined by the jump off?  across the flow at the 
upstream or downstream infinity (point A or B). The corresponding regions in 
the x ,  f ,  and 5 planes are shown in figure 2. 

Denote the x, y velocity components by u, v, and the complex velocity by 

, q = IwI, 8 = tan-l(v/u). (20) * df  w = u - 22, = - = qe-ie 
dz 
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Then, if s is the arc length measured from E along ED, 8 = ,l?(s), say, is known 
on the body surface, and q is known and equal to qc on the cavity boundary DC 
and D'C'. For brevity, qc will be normalized henceforth to unity. In terms of 
the logarithmic hodograph variable 

w = T + i e  = log i lw, = log i lq ,  (21) 

the problem becomes the following Riemann-Hilbert boundary problem : 

e(t3 O + )  = = P(45))  (151 < I) ,  

T ( 5 , 0 + )  = 0 (151 > 117 (22) 

(fJ = 0 ( 1 / 6 )  as 161 --+a, 
in which we specify s( - 6) = - s ( t ) ,  and /3( - s) = - /3(s). We shall also designate 
/3(f) = /3(s([)), with /3( -5) = -/3(f;).  The solution of this problem is 

in which the function (c2- 1)a is analytic in the c plane cut along the f axis from 
- 1 to 1, and tends to 5 as 161 -+ 00. The last condition in (22) is also satisfied 
since the integral in (23) is O(c-2) as [c[ -+ 00, by virtue of /3([) being odd in E. 
Finally, the boundary conditions on w at the upstream and downstream infinity 

(25) 
1 
V 

physical plane is given by quadrature, 

log- = w(ib). 

Equations (19) and (23) provide a parametric solutionf =f(c), w = ~ ( 5 ) .  The 

Since the base chord DD' is of length 1, then I = Im [z(l) - x (  - I)], or 

and hence, after substituting (19) in (27a), 

where C over the integral sign indicates the Cauchy principal value. Thus the 
arc length s, measured from E along ED, is 
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C,(a, A) = h U  1 (T- 1) (&- 1 ) .  

The above solution may be regarded either as a direct (physical), or an inverse 
problem. The direct problem is prescribed by the set of quantities, 

P[P(s),fl,AI (0 < S < 8 = S ( l ) ) ,  (31) 

in which P(s) is a known function of the arc length s, u is taken to be greater than 
the blockage constant a* for fixed h ( = Z/h) < 1.  The inverse problem is specified 

in which p(E;) is a given function of 6 and 0 < a < b. The inverse problem is seen 
to be fully determined, since if the quantities P' are prescribed, then (241, (25) 
provide U and V ,  (23) determines w ( [ ) ,  (27) fixes A, z is given by (26), and finally 
the C, follows from (30). On the other hand, in the direct problem with fixed 
detachment (from a sharp corner of the obstacle), s(E) and P(6) = P ( s ( t ) )  are 
not known a priori. Consequently its solution involves a non-linear integral 
equation (29) for ~ ( 6 )  together with two parameters a, b, which must be evaluated 
under two functional conditions (24) and (27) for fixed U and Zjh. (Note that 
U = (1  + u)-i.) In  the case of smooth detachment (when the body curvature is 
finite on both sides of the detachment point, such as the detachment from a 
circular cylinder), an additional condition is required. The classical condition 
is that of Villat (1914), which can be written as (gZ- l)*w'([) --f 0 as [-+ 1. It 
should be noted that V cannot be arbitrary in problem P; instead it is fixed by 
(25 )  after a, b and P ( t )  are solved. Numerical methods for solution of the direct 
problem have been developed for the unbounded flow case by various authors 
(see e.g. Birkhoff & Zarantonello 1957; Gilbarg 1961; Wu 1968). Furthermore, 
the approximate numerical scheme devised by Wu & Wang (1964b) has been 
found to be very effective. These methods can also be applied to the present 
problem of wall effects. 

Of particular interest is the simple case of symmetric wedges since in this case p 
is constant and the parameters become uncoupled ( U  is then a function of a only, 
see (24)). Consequently, the solution is greatly simplified by considering a mixed 
type problem P"[', u, b] ,  the direct problem being solved by simple cross-plotting. 
We proceed to present the details as follows. 

For a symmetric wedge of half vertex angle Pn, we have 

p([)  = constant = pn (0 < E; < 1). 

w([) = e-w = e+~([/[l+ (1 - [2)+])2a. 

(33) 

(34) 

Then (23) can be readily integrated, giving 

Hence, conditions (24) and (25) become 

U = U(a)  = @/[I + (1  +a2)4])2B, or a = a ( U )  = 2(U-1/28- U1/28)-1, (35) 

V = U ( b ) ,  or b = a(V).  (36) 
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Furthermore, (27) gives the base-chord to channel-width ratio as 

h = Z/h = U[F(  U )  -F( V ) ] ,  ( 3 7 4  

and F( V )  = F(U(b)) ,  i.e. with a in (37b) replaced by b. 
For the direct problem P[P,cr,h], a can first be computed from (35) noting 

that U = (1 + r)-*. Then b can be determined from (37a, b ) ,  and finally V i s  given 
by (36), and C, by (30). The integral (37b) can only be integrated in closed form 

g* 

F I G ~ E  3. Choked-flow drag C D . ( / ~ ,  l/h) of wedges vs. the choked cavitation 
number ~,( /3 ,Z/h) .  Cavity is finite in length for v > v*. 

when /3 = m/n (m and n being integers), since then appropriate changes of 
variables can reduce the integrand to a rational fraction. In  particular, for the 
flat plate, B = +, the result is rather simple: 

However, for EL wide range of 8, it  is more convenient to evaluate the integral 
numerically. 
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The choked flow state is reached as b -+ 00, or equivalently, as V + 1. The 
corresponding limit of a and U ,  for fixed p and A,  will be denoted by a, and U, 
which are related by U, = U(a,), U(a )  being given by (35). By letting b + 00 

in (37)) we have P( V )  --f 0,  and hence 

A = U*F(U(a,)), (39) 
which determines a, = a,(P, A). The corresponding drag coeficient at the 
choked condition is, by (30)) 

c = -  - -1  = - [ ( l + c r , ) L 1 ] 2 .  
D* h(  1 u* ) 2  ; 

The choked flow results (39) and (40) have been computed numerically for several 
values ofp,  as shown in figure 3. The result shows that, for 0 < p < 1, A and C,, 

0 1 2 
fl 

FIGURE 4. Drag coefficients of wedges in unbounded flow (hll = a) based on different 
theoretical models: -, open-wake model; - - - -, Riabouchinsky model. 

both increase monotonically with decreasing a,  (or with inoreasing choking 
cavitation number CT,). With this behaviour of A it  also follows from (37 ) )  by 
simple comparison, that before the tunnel is choked a and U are such that 
a < a,, U < U, (and hence cr > a,). 

The wall effect diminishes as A + 0;  the limit is reached as b -+ a (or V -+ U ) .  
I n  this limit, the drag coefficient CD(cr, p, A)  tends to its value in unbounded 
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flow C,,(c,p), which can be deduced from (30), (36) and (37) by applying 
1'Hospital's rule, giving 

where C, = -dF(U(a))/da2, P (U)  being given by (37b) .  This result has been 
obtained previously by Wu & Wang ( 1 9 6 4 ~ ) .  The above drag coefficient CDo(c, /3) 
for unbounded flow is shown in figure 4. 

0- 

FIGURE Ti. Comparisons of the drag coefficient for 30" and 90° wedges based on the different 
models: -, open-wake model; -- -, choked flow; - - - - -, Riabouchinsky model. 

The drag coefficient CD(c,@,A) has been calculated from (30)' (35)-(37) for 
c < c* and various p and A. The numerical computation was carried out with 
an IBM-360 machine, using the straightforward iteration scheme described 
earlier for the direct problem. With certain transformations of the integration 
variables administered for small values of p and c, convergence of the iterations 
was found satisfactory for all values of cr, p, and A, the errors allowed being less 
than The final numerical results are shown in figure 5 for two representative 
examples pn = 15" and 45'. For a complete coverage of the results reference 
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is made to Wu, Whitney & Lin (1969). Several salient features of the wall effect 
in cavity flows may be noted from these results. First, the effect of the presence 
of the tunnel walls is to  make CD lower than that in an unbounded flow at the 
same cavitation number. The physical reason for this result has been given 
earlier. 

Another remarkable feature of the results is that the percentage drag reduction 
due to the wall, for fixed cr and A, actually increases with decreasing wedge angle. 
For the half vertex angle ,i3n > go", the wall effect becomes exceedingly small. 
This would imply that wall effects are in general more significant for thinner 
bodies in cavity flows, other conditions being equal. Such a general conclusion 
may seem to be surprising at  a first glance. However, it is physically reasonable 
that the pressure reduction over the wetted surface of a thin body may be felt 
over a longer stretch than for blunt bodies. This is borne out by the experimental 
measurements to be made explicit later. Another possible reason is that the 
curvature singularity of the cavity boundary at separation becomes weaker 
as the body thickness ratio decreases, thus causing a greater pressure reduction 
on the wetted surface of the body. 

A further point of interest is that the drag reduction (absolute difference) is 
very insensitive to g ( > a*) for given p and A. This finding is of practical value, 
since, by this rule, the problem of estimating the drag reduction involved in 
CD(u, p, A )  for u > g,(p, A )  (with a finite cavity) is reduced simply to a com- 
parison between the choked flow drag coefficient CD,(u*, p ,  A)  and the unbounded 
flow value CD(g, p, 0) at  cr = g*. More specifically, this rule means that, for 
0- 2 cT*, 

For experimental purposes, however, this rule is insufficient, since CD(v, p , O )  
for unbounded flow is often not known. For this reason, other methods for 
correcting the wall effects will be explored in 5 6. In order to ascertain the accuracy 
of the open-wake model, the above results will be further examined by comparison 
with the Riabouchinsky model and the experiments. 

cD(g, p, O )  - cD(g, p, = cD(g*,  p, 0) - c D , ( g * ,  p, A). (42) 

4. Riabouchinsky model 
We next apply the Riabouchinsky model to evaluate the pure-drag cavity 

flow past a symmetrical body of arbitrary shape placed in a tunnel. The particular 
case of the flat plate has been dealt with by Birkhoff et al. (1952). 

The corresponding regions in the z and f planes are shown together with the 
parametric 6 plane in figure 6. The upper half strip in thef plane is mapped into 
the upper half 5 plane by the general Schwarz-Christoffel transformation (see 
Gilbarg. 1949) : 

in which the coefficient A is determined by the local behaviour off at  the point 
1; = ia .  The function (c2+ b2)4 is analytic in the 5 plane cut from 1; = -ib to 
5 = ib, and (c2 + b2)t  -+ 5 as 151 -+ co. The boundary values of w = I- + i8 again 
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assume the same form as (22), though the symbol 5 = f;+ iq must be referred to 
the present case. (Here we note that 8 = 0 on BC due to the flow symmetry.) 
It therefore follows that the parametric solution w = w(c) ,  the velocity condition 
o(ia) = -log U ,  z = z(5), the base chord 1, the arc length s(k) can again be 
expressedformallyby (23), (24), (26), (27a), and (29), respectively. The velocity V 
now gives the maximum flow velocity along the wall at point B. Thus formally 
the numerical solution for an arbitrary body shape can be carried out by the 
same procedure as described in the previous case. This completes our solution. 

I 
A' 

FIGURE 6. The Riabouchinsky model for pure-drag cavity flows in a tunnel. 

The drag on the body is given by 

in which use has been made of the property Im (w  + W) = 0 for 5 real. 
For a symmetric wedge of half vertex angle PT, w(6) is again given by (34), 

and (35) remains valid to assure w(ia) = U. The ratio A = l/h, by (27a), now 
becomes 

2u 1 (1 + (1 - <2)f)28 51-28 10 (C2 + a2) (g2+ b2)4 "* 
A = - (sin,&) (b2-u2)4 

T (45) 

Finally, (44) gives the drag coefficient, upon eliminating A, as 

c, = (1 + 4 [1 - U a ,  b)/'+(a, b)l, 

The numerical method of solution for arbitrary angle ,8 is again very much the 
same as described in the previous case. 

The choked flow state is reached as b -+ co. The limit o f h  as b -+ co is obviously 
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identical to (39). Furthermore, we derive from (46) and (45) the corresponding 
limit of CD as 

upon integration with appropriate change of variables ( t  = [l - (1 - <2)a]/& and 
with use of the theorem of residues in the complex t plane). This result agrees 
with the momentum theorem (lo), as should be expected. 

At  the other extreme, the unbounded flow limit is readily deduced from (46), 
b -+ a, with the corresponding drag coefficient given by 

This result, as plotted in figure 4 together with the open-wake model, shows that 
the theoretical CDo in unbounded flow, based on the Riabouchinsky model, is 
smaller than that predicted by the open-wake model, and that this difference 
becomes increasingly more appreciable with decreasing wedge angle. 

The drag coefficient CD(u, p, A)  in bounded flows has been calculated from (45), 
(46) over the same range of the parameters as in the preceding case of the open- 
wake model, employing similar numerical methods. As can be seen in the two 
examples shown in figure 5, the important features of the wall effect described 
in 9 3 are very much common to both of the two theoretical flow models. How- 
ever, since the difference between their predicted values of C, is especially marked 
for small h at moderate to high c (away from G*), discrimination between these 
models must necessarily come from further precise experimental studies. Such 
an attempt will be discussed in $9 7 and 8. 

5. Re-entrant jet model 
The re-entrant jet model has been adopted by Gurevich (1953) to evahate 

symmetric cavity flows past a wedge placed in a straight channel. In what 
follows, the general ease of a symmetric body of arbitrary shape is treated by 
using this model. 

The corresponding regions in the z and f planes are shown in figure 7. Though 
a parametric plane similar to those of the previous two models (i.e. with the body 
surface and cavity boundaries spanning the entire real axis of the parametric 
plane) can also be constructed, the present 6 = 5 + ir plane has certain simplifica- 
tions. The upper half strip of the f plane is mapped into the second quadrant of 
the 6 plane by the transformation, 

where A is a positive real constant. By this formula f can be continued analytically 
into the entire 5 plane (by virtue of Imf = 0 on 6 = 0). From the singular be- 
haviour off a t  < = a, b, and 00, it  follows that 

Uh = n A ( ~ ~ - a ' ) ] ( b ~ - a a " ) ,  (50)  
Vh = T A ( c ~ - ~ ' ) / ( ~ ~ - u ~ ) ,  (51) 

Zj = nA. (52)  
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Condition (51) assures that the flow in the downstream tunnel is simply covered. 
From (50) and (51) it also follows that 

V / U  = (c"b2)/(c2-a2). (53) 

From (50) -(52) follows also the continuity condition (U - V )  h = lj. 

J C B A E  D 

t Y  z plane 

, y A B " C  

X 

A I  B 
6 plane I/Y 

FIQURE 7. The re-entrant jet model for pure-drag cavity flows in a tunnel. 

The boundary conditions of w = r + iB are 

e+g) = e(g + 0) = - 7T (5 < - c ) ,  
= o  ( - c < [ < - 1 ) ,  

= P(5) ( -  1 < 5 < O),  
(r > 0). r(0,r)  = 0 

The last condition of (54) enables w ( 6 )  to be analytioally continued into the first 
quadrant of the 6 plane by w(  - [) = - ~ ( 6 ) .  ( ~ ( 6 )  can further be continued into 
the lower half 6 plane by w ( [ )  = m, so that 0 is odd in 7. The lower half flow 
field then corresponds to the fourth quadrant of the 6 plane.) After this continua- 
tion, 8 is prescribed as an even function of 5, for the entire $ axis. The solution 
w ( 6 )  is then given by the Poisson integral, 

- 

The boundary conditions of w at points A and B require that 

(57) 

PL* 49 16 
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Upon substituting the above U ,  V into ( 5 3 ) ,  there results 
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( c + b ) / ( c + a )  = exp{g[Q(-a)-Q( - b ) ] } ,  
from which c can be determined as a function of a, b ;  or c = c(a, b)  say. 

The physical plane is given by 

The half-base chord is 1/2 = Imz(0); hence, upon using (50), 

The arc length s measured from E along ED is 

For the inverse problem with prescribed P’[P(6), a, b ] ,  c is determined by (58), 
U by ( 5 7 ,  h by ( 6 0 )  and s(6) by (61 ) .  Solution of the direct problem P[P(s), c, A ]  
can also proceed along the same lines as described for the previous two models; 
it  is, however, more complicated here since this solution contains an extra 
parameter. 

The drag coefficient has been given for general asymmetric flows by the momen- 
tum theorem (17 ) .  For the present problem, qc = 1 ,  y = 0,  and 

c D = + ; ) ( l + T ) .  v + 2  

For a symmetric wedge of half vertex angle Pn, Q can be integrated to yield 

which is defined in the 5 plane cut along the 5 axis from c = - 1 to 1,  so that 
Q +- 2/3/C as 11;1 j .  co. Hence, by (57), 

Upon substituting (63 )  in (60 ) ,  

h = U [ J ( a , c f - J ( b , c ) ] / ( ~ ~ - ~ ~ ) ,  (sea) 

Equations (64)-(66) determine U ,  h in terms of a,  b,  and vice versa. 

are large compared with a, we deduce from (65 )  the relation, 
The choked flow state is approached as c + 00, and b + co. When both b and c 

b - l - ~  E - L [ l + O ( % ) ]  with ~ 2 :  
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Using (67) in (64)) we obtain for b 9 a, 

The corresponding limit of h = l /h is simply 

By substituting (68) in (62)) we find 

which is in agreement with the previous two flow models. From the requirement 
U, < 1 and V, > 0 it follows that K must lie in the range -$ < K < 1, and hence 

The unbounded flow limit can be derived by letting b -+ a, and by applying 
a, > (1 +y)/(l  - y) ,  y = 2-47. 

I'Hospital's rule to (65)) giving 

(71) 
1 c = - (a2- 1) -a;  
P 

hence, by (64)' 
a2-1-2ap 

(a -  1)1-P(u+ l)l+fl' 
u = -  

We further obtain, by first substituting (53) and (66) in (62)) and then letting 
b + a, for the drag coefficient in unbounded flow, 

c,, = 2( 1 + U ) / (  UZK), (73) 

where 
and J(a,  c) is given by (66 b). 

K(a,  c )  = - aJ(a, c)/aaZ, (74) 

6. Wall correction formulae 
Since the ratio h = Z/h is usually small in experimental practice, the asymptotic 

representation, for h small, of the preceding exact solutions can serve useful 
purposes for evaluating the wall effects and their corrections. The analysis of the 
asymptotic expansion is less complicated for symmetric wedges and will be 
carried out for two different flow models. 

6.l.Open-wake model 

For fixed c-r (hence U ) ,  the unbounded flow limit ( A  = 0) of the drag coefficient 
CD(u, A )  of wedges is obtained by letting V -+ U in (30) and ( 3 7 ~ ) )  giving, upon 
using 1'Hospital's rule, 

CD(a, 0 )  - u-2(u-2- I ) / [dF(U) /dU]-  

If this equation is solved for F'( U ) ,  and integrated from U to V ,  an alternative 
expression for h is obtained (using again (37 a ) )  : 

16-2 
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where r(u) = u - ~  - 1. For a given body shape (the wedge angle), (75) determines 
V implicitly as a function of 0- and A. 

We next seek a partial differential equat,ion for Cu(O-, A). Partial differentiation 
of (75) and CD(O-,h) given by (30) with respect to 0- and h and elimination of 
terms involving V gives 

In  the limit as h -+ 0, this equation reduces to  

For fixed 0-, (76) gives an estimate of the dependence of C, on A, namely aC,/aA, 
provided both C, and aCD/aO- are known. These quantities may be found either 
from theory or experiments (assuming CD(a, 0) = CD(g, A )  + O ( h ) ) ,  although the 
calculation of aC,la0- would require estimating a derivative from experimental 
data, which can be rather inaccurate. 

Amoreuseful result follows by integrating (76) from 0-' to 0- > 0-' (cr- 0-' = O(A) )  
along the mathematical characteristics of (76), 

where 0-' = 0-- (,)CD(0-',0)A+O(h2), l + C '  

or, to the same order of accuracy, 

This two-way correction rule (first derived by Whitney 1969) takes a measured 
drag coefficient CD(O-, A), in a tunnel of known A, and converts it by (77) and (78b) 
to an estimated unbounded drag coefficient CD(a', 0) in unbounded flow ( A  = 0) 
a t  a different cavitation number, IT', given by (78b). The process may also be 
reversed by use of (77)) (78a) instead of (77)) (78b). 

An example of the use of this rule in estimating unbounded drag coefficients 
from theoretically calculated data, CB(0-,h), is shown in figure 8 for /lrr = 15'. 
The agreement of predicted estimates with calculated values of CD(O-', 0) is 
found to be excellent for all angles, with h up to 6 and 0- up to 1. 

As was pointed out earlier, estimates of Cb(cr, A )  can be readily obtained if good 
approximations to CD(a, 0) are known. For example, for wedges with /ln > 60") 
a good approximation of C,(CT, 0) for 0- < 1 is 

cD(cr, O) = c()(/l) ( l +  0-)- (79a) 
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Then (75) can be integrated to yield h = ( U/Co) ( U ' - I +  U - 8 - I -  V ) ,  and hence, 
by (3% 

C,(a,h) = cou--2 = C0(l+(T) = C,(Cr,O). (79b) 

Thus, there is no correction for wall effect if C,((T, 0) obeys the linear relationship 
(79a)  exactly, and it is reasonable to expect that the correction is small if (79a) 
is satisfied approximately. This is confirmed by numerical calculations. In  this 
case, the correction rule (77), (78) simply shifts C,(a, A )  a'long the same curve of 
CD(o-, 0) from one value (T to another value (T'. 

U 
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FIGURE 8. Correction rules tested against theoretical results for 30" wedge. 

Computed Corrected to Meijer's corrected 
h = l/h C D ( U ,  A) CD(C', 0) C;;( a") 
0.025 v v 
0.050 0 0 0 
0.100 n A A 
0.167 0 w E 

Open-wake model (top): ----, choked flow in linearized solution (Cohen & Gilbert); 
-, unbounded flow CD(U, 0); -- - , choked flow C,*(a). Riabouchinsky model (bottom): 
-, unbounded flow; ---, choked flow; ---- , choked flow estimate (see (88)). 
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Another important case occurs for small angle wedges (p7r < 15’) and r fairly 
large, when 

is a good approximation (see figure 4). Then we find 

C,(r,O) N cr ( 8 0 4  

(sob)  C,(r, 4 = C,(a, 0) - A m -  4, 
which is in excellent agreement with numerical evaluations of the exact solution 
as well as with the correction rule (77), (78). 

6.2. Riabouchinsk y model 
For this model the exact solution (45), (46) shows that C,(r, A)  and h are functions 
of the parameters a, b, which depend on the upstream velocity U and the maxi- 
mum velocity V on the wall according to the same relationships a = a(U) ,  
b = a( V ) ,  as given by (35), (36) for the open-wake model. In  order to examine 
the rate of change of b, as the ‘tunnel-spacing ratio’ A is varied, and the role 
played by the minimum pressure (Pb and the maximum velocity J‘ on the wall 
(as was once investigated by Meijer 1967, see (6)) we also introduce a new cavita- 
tion number a’’ based on pb and V as 

,‘# = (pb -pc)/&pV2 = V-2 - 1 = 4 V ) ,  

fT = a ( U )  = U-2- 1. 

(81) 

(82)  

where IT( U )  gives the conventional cavitation number (see (a)), 

The unbounded flow limit A = 0 is reached as b + a, which implies V -+ U 
and r” --f r. In order to estimate C, for small A, we expand C,(r, A) ,  given by (46) 
in Taylor’s series for I a’‘ - rl 4 1 : 

Now, by (as), (36) and (81), 

Since the functional dependence of r” on b is the same as that of r on a (see (35), 
(36), (81), (82)), we have 

da dU 
[ $ Z ] b = ,  = dU&‘ 

Furthermore, from (46b) it  immediately follows that 

Combining these results, we have 
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Upon substituting (84) in (83), the resulting equation can evidently be written as 

where B' = a+-;(d'-tT) = $cr+Qd', (86) 

and c", as given by (81) can be obtained either by actual measurement in 
experiments or it can be calculated if V is known. The parameter b related to V 
by (36) can be estimated from (45) and (46b) as 

7lA b = a + -  
2 U sin &I+(a, a)  

so that V can be found from (36). This correction rule has also been compared 
with the numerical results of the exact solution of C,(cr,A); the agreement is 
again excellent for wedges of all angles with A < Q, (r < 1. An example is shown 
in figure 8 for PT = 15". Its application in experiments will be discussed in fj 8. 

In the choked flow limit, V + 1; hence B" -+ 0, and B -+ B*, say; so that (85) 
becomes 

This equation gives the choked flow drag coefficient if the unbounded drag 
coefficient as a function of B is known, or vice versa. As an example of the use of 
(88), we estimate the choked flow CD for P?T = 15" in figure 8 and compare this 
with the computed value. 

It is noteworthy that (85) is identical to (77); only B' is different in these two 
theoretically derived wall correction rules, To this end, we note that B' in (78 b )  
is known once B, A and CD(u,A) are measured, whereas in (85) and (86), d' 
requires an additional measurement of either V or p,. 

Another point worthy of note is that, although the significance of B" was 
explored by Meijer (1967), its use in Meijer's empirical rule leads to an over- 
correction of the wall effect on drag coeffioient, as demonstrated in figure 8. 
This is because in Meijer's rule, a" takes the place of B', instead of a weighted 
contribution as given by (86). 

Finally, we observe that in these two sets of wall correction rules the body 
configuration has become implicitly absorbed in the drag coefficient as one of its 
arguments (i.e. C,(CT, A;  p)). In view of the result that these correction rules are 
extremely accurate over the entire range of /3(0 < /i' < I), it is reasonable to 
expect that they are also valid for bodies of arbitrary shape, at  least for those 
with not too great curvature of their surface profiles. 

7. Experiments 
The first concern of the experimental investigation was the verification of the 

theoretical analyses and of the correction rules derived from the theory. However, 
at the same time the opportunity is taken to discuss some of the other problems 
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and real fluid effects that arise during cavitation experiments in high-speed water 
tunnels. These may be grouped as follows: 

(i) Viscous effects due to the boundary layer on the model being tested. 
(ii) Viscous and other effects due to the boundary layer on the tunnel walls, 

including production of a longitudinal pressure gradient and acceleration, and the 
possible appearance of secondary flows. 

(iii) The necessity of determining the cavity pressurePC; effects which cause this 
to differ from pU, the vapour pressure. 

(iv) The determination of a hypothetical 'free strea,m' pressure p ,  equal to 
the remote pressure where the tunnel is infinitely long. 

(v) Limitations on the range of cavitation number that can be satisfactorily 
covered including the effect of flow choking. 

(vi) Effects due to actual cavity closure. These include the unsteady, turbulent 
nature of the flow in this region, the cavity filling effect of the re-entrant jet 
(especially when this impinges on the rear of the headform) and the viscous, 
turbulent wake behind the cavity. 

Some discussion of these problems and effects is included in $ 8. 
The experiments were carried out in the high-speed water tunnel at the 

California Institute of Technology. Four wedges of vertex angle 2Pn = 74", go, 
15" and 30" (chord z 6 in.) were tested in the 6 in. span, two-dimensional working 
section (Kiceniuk 1964) of normal height 30in. However, by fitting the tunnel 
with inserts the 9" and 30" wedges were also run with a wall spacing of 13.45 in. 
The models were supported in the centre of the tunnel on a three component 
force balance for direct measurement of total drag. At the conclusion of each set 
of experiments the tare drag forces on the fairing plate and wedge supports were 
measured by replacing that plate by a blank, supporting the wedge in the same 
position but fastened to the opposite side-wall and measuring the drag registered 
under conditions identical to those of the main experiments. Subtracting this 
tare drag from the original drag reading yielded a measure of the force on the 
wedge alone. 

A working section reference pressure, pT, was measured at  a point in the centre 
of the side-wall about 7in. upstream of the leading edge of the model using a 
water/mercury/air manometer (see $8). The hypothetical 'free stream ' velocity 
in the working section U was inferred from the difference between p ,  and the 
pressure upstream of the convergent section. A series of static pressure taps on 
the lower wall were connected to an inverted water manometer referenced to pT 
for the purpose of determining the wall pressure distribution. Since some dif- 
ferences were observed even with no model installed in the tunnel, values more 
representative of the effect of the model were obtained by using these 'clear 
tunnel' readings as datum. 

All four wedges included a base pressure tapping used to measure cavity 
pressure, pc,  the technique employed being a familiar one (Brennen 1 9 6 9 ~ ) .  
The pressure line is connected through a two-way push-pull valve to an air supply 
adjusted so that the air flow keeps the line free of liquid. Activating the valve cut 
off this supply and connected in an air/mercury/water manometer from which, 
following an interval of a few seconds, the difference (pT - p c )  could be obtained. 
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Two of the wedges, the 9" and 30°, were built up from the basic model used by 
Meijer (1967), in order to utilize the static pressure tubes distributed along one 
face of that model. Fifteen of these were connected to a waterlmercury mano- 
meter board referred to  pT in order to  obtain wetted surface pressure distribu- 
tions; bleeding of these lines before every reading was required to obtain reliable 
data. 

For each model configuration data was obtained over a series of cavitation 
numbers cr, at a few selected velocities U.  However, apart from the limit imposed 
by flow choking (i.e. cr > cr*), there were certain other physical limitations upon 
the range of cr which could be safely and satisfactorily covered at  a particular 
velocity. At  higher velocities (35 to 50 f t  sec-l depending on model size) readings 
could be obtained only up to a certain cry for above this either the drag exceeded 
t'hat measurable by the balance (120 lb) or the vibration of the whole structure 
became excessive. At lower velocities (25-40 f t  sec-l depending on model size) a 
minimum (T was usually imposed by the fact that an excessive number of vapour/ 
air bubbles appeared in the pressure lines when pT was less than about 0-45 f t  of 
mercury. In the case of the reduced tunnel, vibration of the inserts and oscillation 
of the flow around them was an added hazard. In general, however, an acceptable 
range of cr could be obtained by combining the results at two velocities, one 
in the higher range, the other in the lower. 

A recurring problem in water tunnel experiments arises in determining a 
hypothetical, 'free stream' pressure corresponding to the remote pressure, p ,  
of potential flow calculations which assume the working section to be infinitely 
long. In  a tunnel of constant section, a favourable longitudinal pressure gradient 
is produced by boundary-layer growth on the walls. In the present tunnel this 
could be overcome by flairing the side walls (Kiceniuk 1964). Then the longi- 
tudinal pressure gradient is given roughly by 

(89) ac,=----- 4 ( ~  + h) as, 2 aB 
ax B a x  Bh ax ' 

where 8, is some mean boundary-layer displacement thickness, x the centre-line 
distance, and B(x)  is the tunnel breadth. Under normal operational conditions the 
boundary layer is probably turbulent, so that a8,/8x may be given by 0.038 
(v/xU)),  though the effective origin of x is difficult to estimate. However, both 
the experiments of Kiceniuk (1964) and the above formula when, say, xi is of 
order 1 ft) and U is between 30 and 50ft sec-l indicate that aC,/ax is roughly 
zero when aB/ax is about 0.003. Thus the flair is set a t  this value. Nevertheless, 
since pressures are to be measured on the model itself it seems wise to locate the 
reference pressure tap as close to the model as possible, yet far enough away for 
the influence of the pressure field around the model to be negligible. The choice 
of a tap 7in. from the leading edge of the model involved such compromises. 
Theoretical estimates indicated that the pressure field influence was less than 
AC, = 0.01 at that point. Further upstream the influence of the tunnel con- 
vergent section is felt (e.g. 6in. further upstream, C, was of the order of 0.03 
higher). 
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-0.5 

8. Experimental results 
It will be seen that of the theoretical models that of Riabouchinsky yields 

results closest to the experimental measurements. To avoid confusion by pro- 
fusion, comparison is made in most of the figures only with that model, whilst 
comments on the other model will be included in the text. Typical pressure dis- 
tributions on the faces of the 9" and 30" wedges are shown in figures 9 and 10, 
where s is measured along the wetted surface from the leading edge, and 8 = S 
at separation. These agree quite well with the theory, though two deviations are 

- - 
1 I I I 4 

0 0.2 0.4 0.6 0.8 1 .o 
4s 

FIGURE 9. Pressure distribution on the 9" wedge. Theoretical Riabouchinsky model : 
-, Z/h = 0.0323; - - - - -, Z/h = 0.0716, for u as shown. Experimental points: 

l/h 0.0324 0.0324 0.0324 0.0716 0.0716 
U 0.159 0.267 0.585 0.308 0.587 

0 0 A 0 A 

noteworthy: (i) the lower experimental C, close to the leading edge are probably 
due to a slight downward inclination of the incident stream, since small negative 
lifts were also registered by the balance; (ii) near the trailing edge the experimental 
C, are slightly above the theory, especially when the flow is dose to being choked. 
This second effect may be partly due to the presence of small air/vapour bubbles 
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in the tubes registering these low pressures, though there may also be some con- 
tribution from the complex boundary-layer flow near separation. Note also how 
the effect of the wall is to depress the centre portion of the pressure distribution 
while the end points (C, = 1 at stagnation, = --(r a t  separation) remain un- 
changed. 

0.8 

0.6 

0.4 

0.2 

0 

- 0.2 

- 0.4 
3 

- 0.6 

- 0.8 

- 1.0 

- 1.2 

- 1.4 
0 0.2 0.4 0.6 0.8 1 .o 

4s 
F I G ~ E  10. Pressure distribution on the 30" wedge. Tbeoretical Riabouchinsky model: 
-, l/h = 0.107; - - - - - , Z/h = 0.236, for d as shown. Experimental points: 

0.107 0.107 0.107 0.236 0.236 
0- 0.60 0.882 1.393 1.28 1.54 
llh 

a 0 0 X 

Coefficients of drag are plotted in figures 11 and 12. Graphic integration of the 
experimental pressure distributions yields results in excellent agreement with 
the Riabouchinsky model theory. The direct measurements, corrected for tare 
drag, showed a greater scatter and the comparison is poorer. An estimate of the 
skin friction component of this total drag was obtained using the Faulkner-Skan 
solutions for the boundary-layer flow near the leading edge of a wedge. Then 
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where n = ,8/( 1 -p), A represents the strength of the leading edge singularity 
which is estimated from the value of (1  - Cp) (S/s)n near that point and takes a 
value of about unity. In  the conventional notation,f"(O) is a known function of /3 
available in tables of Faulkner-Skan solutions. The work of Ackerberg (1970) 
would indicate that the contribution of the rapidly accelerating flow near the 
trailing edge is small in comparison. Equation (90) yields respective values of 
0.012 and 0.006 for the 9" and 30" wedge experiments, and these are included in 
the figures, with, as can be seen, mixed results. 

I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

U 

FIGURE 11. Drag of the 9" wedge (/3?r = 4.6"). Theory: -, Riabouchinsky model; - - - - -, 
choked flow line; t, choked flow a t  specified llh. Experiment: pressure integration, 
n,Z/h = 0.07 16; 0, Z/h = 0.0324; and 0 ,  corresponding values corrected t o  unbounded 
flow using (85) ,  (86); balance measurement and with viscous drag estimate subtracted, 
1, I/h = 0.0716; $, E/h = 0.0324. 

The more reliable data (namely, the pressure-integrated drag coefficients) 
could also be compared with the results of the open-wake theoretical model. 
However, it is clear, from the agreement with the Riabouchinsky model and the 
difference between the two theoretical models (see e.g. figures 5 and 8), that the 
experimental values will lie significantly below the open-wake theory, except 
close to the choked condition, where the theories virtually coincide in any case. 
The difference would be especially marked for small Z/h a t  moderate to high cr. 
Comparison could also be made with the results of the linearized theory of 
Cohen & Gilbert (1957). As expected, the linearized theory yields values of C, 
substantially greater than either the exact theory or the experiments. This is 
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exemplified in figure 8, where it is seen that the linearized theoretical choked 
flow line is actually above the unbounded flow line for a 30" wedge. The difference 
is of course less for wedges of smaller /In. 

Previous experimental measurements by Waid (1957) in a solid wall tun- 
nel of h = 0.027, and by Cox & Clayden (1958) in a free jet tunnel (Zlfree jet 
width M 0.055), are also shown in figure 12. The wall effect is expected to be 
small in both instances. Agreement with theory is good, and Waid's measure- 
ments indicate a small wall effect of the expected proportions. 

h = 0.1 67 

0.4 

l/h=0.050 

0 * 2 y ; ~ 1  llh=0.025 , 
, , { 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1-7 

d 

FIGURE 12. Drag of the 30" wedge (pn = 15'). Theory: ---, Riabouchinsky model; - - - -, 
choked flow line; f ,  choked flow a t  specified Zlh. Experiment: pressure integration, 0, 
Z/h= 0.236; 0, Z/h = 0.107; and 0 ,  corresponding values corrected to unbounded flow 
using (851, ( 8 6 ) ;  balance measurement, +, Z/h = 0.107 (viscous estimate, ACD = 0.006). 
V,  Experiments of Waid (1957), Z/h = 0.027; A, of Cox & Clayden (1958) in free jet tunnel. 

Sample wall pressure distributions, referenced to clear tunnel values as men- 
tioned in $ 6 ,  are presented in figure 13 for the case of the 9" wedge. Note that the 
cavity wake causes the experimental curves to asymptote to a non-zero C, 
down-stream of the cavity. Thus, the actual curves correspond to a compromise 
on the Riabouchinsky model theory in the direction of the open-wake model 
(the curves for which are not shown but decrease monotonically toward a value 
corresponding to velocity V ) .  This deviation clearly causes a slight reduction of 
the minimum wall pressure below the Riabouchinsky model value. This occurred 
consistently as can be seen from figure 14 where the minimum wall pressures for 
all model configurations are plotted against v. Nevertheless, the agreement with 
theory is satisfactory. 
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Distance downstream from point opposite trailing edge of model (in.) 

-5 0 5 10 15 20 25 30 

-0.08 - 

/ 
\ 

'a 
-0.10 - \ - 

'\ 

-----*- 
-0.12 I I I I I 1 I 1 

FIGURE 13. Sample wall pressure distributions for 2pn = 9", Z/h = 0.0324. - - - - -, 
experimental curves; -, Riabouchinsky model theory. 

U 

0 0.1 0.2 0.3 0.4 0.5 0.6 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
! I ' I 1 ' I i '  
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-0.4 - 

-0.5 - 

-0.6 - 

-0.7 - 
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-0.8 - \ - 
\ 

- 0.9 I I I I I  

FIGURE 14. Minimum wall pressure 2)s. cavitation number. Experimental points: 
wedge angle 7.5" 9" 9" 16" 30" 30" 

0.0262 0.0324 0.0716 0.0527 0-107 0.236 
+ 0 X 0 0 

Jlh 

Corresponding Riabouchinsky model theoretical curves (-) are indicated by arrows; 
_ _ _ - _  , choked flow. 
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The pressure-integrated drag on the 9" and 30" wedges are corrected for wall 
effect using the relations (85), (86) and the experimental values of minimum wall 
pressure. The results are the solid points in figures 11 and 12. Clearly the results 
are very satisfactory, since the rule collapses the points for different lIh onto a 
single line very close to the unbounded theoretical line. The only noticeable 
deviation is a t  low r, where the experimental points lie somewhat above that 
theoretical curve. 
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